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We investigate noise-controlled resonant response of active media to weak periodic forcing, both in excitable
and oscillatory regimes. In the excitable regime, we find that noise-induced irregular wave structures can be
reorganized into frequency-locked resonant patterns by weak signals with suitable frequencies. The resonance
occurs due to a matching condition between the signal frequency and the noise-induced inherent time scale of
the media.m:1 resonant regions similar to the Arnold tongues in frequency locking of self-sustained oscilla-
tory media are observed. In the self-sustained oscillatory regime, noise also controls the oscillation frequency
and reshapes significantly the Arnold tongues. The combination of noise and weak signal thus could provide an
efficient tool to manipulate active extended systems in experiments.
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I. INTRODUCTION

Pattern formation in spatially extended systems subject to
external forcing has been studied extensively[1–9]. In reso-
nantly forced oscillatory reaction-diffusion systems,m:1 fre-
quency locking occurs similar to that in a single, uncoupled
oscillator. The entrained system hasm stable states with
phases separated by multiples of 2p /m, i.e., the m-phase
patterns, such that traveling waves are stabilized to various
standing wave patterns. Such resonant patterns have been
observed in light-sensitive Belousov-Zhabotinsky(BZ) reac-
tions under periodic illumination[5].

Periodic illumination has also been applied to control spa-
tially stationary Turing structure. Most efficient suppression
of pattern occurs at a frequency of illumination equal to the
frequency of autonomous oscillations in a corresponding
well-stirred system[6]. Besides temporal(spatially uniform)
illuminations, spatial(steady) [7] and spatiotemporal[8]
modulations have also been used to study resonant response
of Turing patterns. Periodic illumination of spiral waves in
excitable BZ reaction can induce entrained drift of the spiral
core [9]. Periodically vibrated granular layer can display a
rich variety of patterns[10]. Thus, external forcing provides
an alternative powerful tool to probe the inherent mechanism
and to control the behavior of pattern formation in extended
systems, in parallel with global[11] or spatiotemporal[12]
feedbacks.

Imperfections and noise are inevitably present in real sys-
tems. Complicated front dynamics have been observed in
resonantly forced reaction-diffusion systems with spatial or
spatiotemporal random forcing amplitudes[13], e.g., due to
inhomogeneities in illumination. To our knowledge, effects
of noise on resonant pattern formation of self-sustained os-
cillatory extended systems have not yet been studied. Intu-
itively noise will have degrading influences based on the
knowledge that it usually spoils phase locking of single os-
cillators by phase slips[14].

On the other hand, the influence of noise on extended
systems can actually enhance the pattern-formation mecha-
nism [15]. Such constructive effects include noise-induced
transitions [15], noise-enhanced signal propagation in
bistable or monostable media[16], noise-sustained wave

propagation in subexcitable chemical reactions[17], and spa-
tiotemporal stochastic resonance[18]. In particular, in active
media, noise alone can sustain spiral waves[19], target
waves[20,21] or pulsating waves[21], and enhances spatial
synchronization[22] and temporal coherence[23]. In these
systems, the interplay between noise-induced excitation and
wave propagation has generated oscillatory behavior with
some characteristic time or length scales. However, not much
is known how the noise-sustained oscillatory behavior re-
sponds to weak external forcing. Recently, we have shown
that, unlike in an isolated Fitz Hugh-Nagumo(FHN) excit-
able cell, in a small one-dimensional(1D) chain of coupled
FHN cells, noise-sustained oscillations may become locked
by rather weak periodic signals, because coupling enhances
significantly the coherence of the noise-sustained oscillations
[24].

In this paper we study effects of noise on resonant pattern
formation of 2D FHN media forced by spatially uniform,
weak periodic signals, both in the excitable and in the oscil-
latory regimes. We will show that in the excitable regime,
due to the influence of noise, signals much weaker than the
threshold can induce coherent resonant patterns. In the self-
sustained oscillatory regime, instead of simply spoiling lock-
ing as intuitively expected, noise controls the natural fre-
quency of the oscillation, and reshapes significantly the
locking tongues of the media.

II. EXCITABLE REGIME

Our results are based on numerical simulations of 2D lat-
tices ofN3N sN=100d locally coupled Fitz Hugh-Nagumo
(FHN) model[22,23], which are paradigmatic for active dy-
namics in biology or chemical reactions:

eẋi j = xij −
xij

3

3
− yij + A cosVt +

g

4o
kl

sxkl − xijd,

ẏi j = xij + a + Î2Dji jstd s1d

with a periodic boundary condition. Heresk, ld=si ±1, j ±1d.
With e=0.01 anda.1.0, the homogeneous medium is ex-
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citable. After a subcritical Hopf bifurcation ata=1.0, the
system moves into the self-sustained oscillatory regime for
a,1.0. In this section, we fixa=1.05 in the excitable re-
gime. g is the coupling strength andD is the intensity of
Gaussian noiseji jstd, white in space and time. The lattice is
driven uniformly by a periodic signal with a frequencyV
and an amplitudeA. This discrete lattice is suitable for the
description of excitable biological tissue(e.g., neurons, car-
diac cells) [25], and can also be regarded as an approxima-
tion of continuum active media(e.g., active chemical reac-
tions) [19]. The model is integrated using a Heun algorithm
[15] with a small time stepdt=0.001.

Without forcing sA=0d, firing elements are a source for
waves spreading through the lattice at strong enough cou-
pling g. At small intensitiesD noise induces clear target
waves when random spontaneous nucleations of excitations
are rare. At largerD, wheng is also relatively large, spread-
ing waves initiated at many random positions may be quick
enough to merge and cover almost the whole domain. After-
wards the media achieve a synchronized relaxation back to
the vicinity of the homogeneous steady state where another
round of noise-induced nucleation starts to sustain pulsating
waves(nearly global oscillations) in the media[21,22]. At
weaker coupling strengthg, e.g.,g=0.03 considered in this
paper, the collision of the waves initiated from many random
positions results in rather irregular patterns[Fig. 1(a)]. The
spiking sequences of individual cells are erratic[Fig. 1(b)],
and the domain does not show a coherent collective oscilla-
tion, as seen by almost vanishing fluctuation of the spatial
mean valuekxl over the whole domain[Fig. 1(c)]. Such an
irregular regime is quite different from the coherent regime
studied previously in 1D chains of coupled FHN cells[24]
where strong enough coupling and noise together already
induce synchronized oscillations of the chains. However, the
interplay of noise excitation and wave propagation has al-
ready generated some internal order in the system: the dis-
tribution PsTd of the interspike intervalT of the cells exhibits
a sharp peak atTp, followed by a broad tail[Fig. 1(d)]. While
the long tail related to the stochastic waiting time of noise
excitation of the cells is very similar to isolated cells, the

sharp peak is mainly a result of propagating waves from the
excitation centers in the surrounding area. The peak valueTp
is thus controlled by both the coupling strengthg and the
noise intensityD. The wave patterns and the shape ofPsTd
are similar for a broad range of noise intensity 5310−5

&D&1310−2. Now we have two time scales in the system:
the characteristic firing frequency(CFF) Vp=2p /Tp and the
mean firing frequency(MFF) Va=2p /Ta,Vp (Ta=kTlt is
the time average ofT), which are not well expressed inkxl.
Variation of these frequencies vs the noise intensityD for
g=0.03 is shown later[Fig. 4]. With increasingD, spontane-
ous nucleation becomes more frequent and denser, so that
both the CFFVp and the MFFVa increase, but for smallg
they are clearly different from each other. There are regions
of largerg and correspondingD where the long tail inPsTd
is eliminated so thatVa<Vp; the spiking sequences attain a
much higher coherence compared to the most coherent firing
behavior in an isolated element[28], a phenomenon called
array-enhanced coherence resonance(AECR) [23]. Our re-
cent work [24] in this coherent regime demonstrated that
ACER enhances locking of 1D chains to weak signals.

In the following, the mediasg=0.03d are exposed to both
signal and noise, starting from the homogeneous steady state.
Reorganization of the patterns in the presence of a subthresh-
old signalsV=3.2,A=0.012,Ath=0.02, the signal threshold
of noise-free media) is shown in Fig. 2. At a rather weak

FIG. 1. Typical noise-induced behavior in the media atg
=0.03 sD=3310−4d. (a) A snapshot of irregular wave patterns,(b)
a spike sequence of an element in the lattice,(c) time series of the
spatial mean valuekxl, (d) distribution of the interspike intervalT
of the elements.

FIG. 2. Patterns att1 (upper) andt1+Ts (bottom) in the presence
of subthreshold signalsA=0.012,V=3.2d at various noise intensi-
ties: D=0.2310−4 (a), D=1.0310−4 (b), D=3.0310−4 (c), and
D=8.0310−4 (d). The momentt1 corresponds to a local maximum
of kxl after a transient, andTs=2p /V is the signal period.

FIG. 3. Time series of the mean fieldkxl (a,b,c) and distribution
of spiking phases of all the cells over a long period of time(d,e,f) in
the forced media generating different patterns:(a,d) LSW sD=1.0
310−4d, (b,e) LPW sD=3.0310−4d and (d,f) unlocked patterns
sD=8.0310−4d. The dotted lines in(a,b,c) indicate the forcing
signal.
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intensity, e.g.,D=0.2310−4, noise alone can hardly initiate
target waves. Together with the weak signal, noise now ex-
cites simultaneous many target waves which however, have
not been locked by the signal[Fig. 2(a)]. At a larger intensity
D=1.0310−4, the MFF v of all the cells is locked to the
signal with a ratio 2:1,v=V /2. The medium reorganizes
from patterns similar to Fig. 1(a) into two almost uniform
domains [Fig. 2(b)], each locked to the signal but with
phases differing byp. Such locked standing-wave patterns
(LSW) are similar to those observed in self-sustained oscil-
latory media subject to resonant forcing[3–5] or global feed-
back[11]. kxl now shows a 1:1 phase locking with the signal
[Fig. 3(a)], in the sense that there is a smaller or larger spike
in each period of the signal. At the larger intensityD=3.0
310−4, the media remain 2:1 locked with the signal, but the
spatial patterns become almost uniform[Fig. 2(c)] such that
kxl also shows a 2:1 phase locking[Fig. 3(b)]. We call such
patterns locked pulsating waves(LPW). At even larger inten-
sities, the locking is lost and the patterns become dense,
randomly flushing clusters[Fig. 2(d)]; however,kxl displays
a clear oscillation with a 1:1 phase locking to the signal[Fig.
3(c)]. The waves die out and the media relax to the homoge-
neous steady states when noise is ceased in simulations.

Phase locking of these noise-sustained waves in the me-
dia, however, is not perfect; the domains in Figs. 2(b) and
2(c) are not fully uniform. The spiking phasefi j
=Vti j mod 2p (ti j being the firing time of thei j th cell) has
a distributionPsfd with finite width, indicating fluctuations
in the firing time. For LSW, the two domains are associated
with two separated peaks with a distance ofp in Psfd [Fig.
3(d)]; while for LPW, there is only one peak[Fig. 3(e)]. For
unlocked media[Fig. 2(d)], there are two linked peaks[Fig.
3(f)], since the firing in the random clusters is locked tem-
porally by the signal either around a phasef1 or f2=f1
+p, and can slip between them. This induces the 1:1 mean-
field oscillations in Fig. 3(c). The peak heights inPsfd and
the amplitudes ofkxl become smaller with increasingD out-
side the locking region.

The mechanism underlying frequency locking and reso-
nant pattern formation is a matching of time scales: one time
scale is the signal frequency and the other is the noise-
induced intrinsic CFFVp. As shown in Fig. 4(a), the fre-
quency lockingsv−V /2=0d is achieved in a range ofD
around this matching point(Vp−V /2=0,D=1.8310−4), but
not around (Va−V /2=0, D=3.2310−3) where noise-
induced MFF matches the signal frequency. In the parameter
space of the noise intensity and signal amplitudesD ,Ad,
there is a locking region[Fig. 4(b)] similar to the Arnold
tongue in self-sustained oscillatory media in the sense thatD
controls the initial frequency mismatches. Patterns associated
to different D and A are indicated by different symbols in
Fig. 4(b). Frequency locking and resonant pattern formation
occur already for signal amplitudes much smaller than the
threshold. When locking is achieved, the fluctuations of the
firing time of the cells are reduced significantly by the weak
signal. This enhances coherence as measured byR
=kTlt /ÎvarsTd, which exhibits a clear resonant feature
againstD for subthreshold signals, and is much higher than
R of unforced media[Fig. 4(c), dotted line]. Here the small

values ofR at A=0 show again that the system is different
from the regime of AECR in 1D chains considered in our
previous publication[24].

To verify the time-scale matching condition for reso-
nance, we fix the noise intensityD (D=3.0310−4 and Vp
=1.62) and vary the signal frequency in the range 1.0øV
ø6.0. Figure 5 depicts clearly the 1:1, 2:1, and 3:1 Arnold
tongues forV aroundmVp [26]. Outside but close to these
locked regions, mainly on the lowerV side, there are un-
locked patterns with pronounced 1:1 oscillations of the mean
field kxl [Fig. 5(a), pluses]. In the 1:1 locking region, the
media display LPW which can also be observed in the 2:1
and 3:1 regions(closed circles). In the 2:1 and 3:1 regions,
the LSW patterns are observed where the media are reorga-
nized into 2(3) domains which oscillate with phases differ-
ing by 2p /2 s2p /3d (open circles). In all them:1 cases, the
locking is achieved already for rather weak subthreshold sig-
nals. The coherence measureR exhibits resonance feature vs
V, attaining much larger values when moving into the lock-
ing regions. The locking regions move with the noise inten-
sity D which controls the CFFVp, but are no longer confined
by the superathreshold locking boundaries in the noise-free
homogeneous media[Fig. 5(a), solid lines]. At rather small
intensitiesD which do not generate a CFFVp, the locking
regions approach to the superathreshold ones. There the
locking does not obey the time-scale matching condition.

The locking and resonance in the excitable media due to
the time-scale matching condition as studied here is quite
different from usual stochastic resonance and noise-enhanced
synchronization[27]. There, noise-sustained oscillations of
bistable systems do not establish a natural frequency. While

FIG. 4. 2:1 frequency locking regions at a fixed signal frequency
V=3.2. (a) A=0.012. The frequency differencev−V /2 in the
forced media is compared to the matching between the noise-
induced sA=0d CFF sVpd or MFF sVad with the signal.(b) The
locking region in the parameter space(D, A). The dashed line indi-
cates thresholdAth=0.02 above which the signal can induce a 2:1
locked response in the noise-free media. The symbols represent
different patterns in the forced media: LSWs+d, LPW s•d, and un-
locked patterns with clear 1:1 oscillations ofkxl s+d. (c) Coherence
measureR corresponding to(b), which increases withA and exhib-
its a resonance for subthreshold signals. The dotted line shows co-
herenceR of unforced media, i.e.,A=0.
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an effective locking of phase and mean switching frequency
is achieved for sufficiently slow signals with amplitudes
close to the threshold, it does not obey the time-scale match-
ing condition. The coherence and synchronization measures
do not display resonance with respect to the signal frequency
V [27], and there is no effective high orderm:1 sm.1d
mean-frequency locking[27].

Besides the similarities, resonant pattern formation of
noisy excitable media also bears fundamental difference
compared to self-sustained oscillatory media. In the latter
case, the local oscillation frequency is close to the autono-
mous frequency of spatially homogeneous media, with some
modulations by diffusive couplings[4]. As a result, the Ar-
nold tongues of the media almost coincide with those of a
single oscillator, together with some deviations resulting
from these modulations[4,5]. In noisy excitable media, the
locking essentially disappears when the cells are decoupled.
For homogeneous media subjected to a spatially uniform
noise with intensityD (equivalent to a single uncoupled
cell), although noise can generate coherent spike sequence
due to coherence resonance[28], and coherence measures do
show a resonance with the change of bothD andV [29], we
find that the time scale matching does not lead to frequency
locking for weak subthreshold signals in the whole range of
D. Thus a global noise cannot induce constructive locking
behavior in this type of excitable media. This is consistent
with previous observations that a global noise cannot induce
coherent global oscillations(pulsating waves) of the media
[21]. The intrinsic time scale essential for locking by weak
signals is necessarily induced by the interplay between the
random spontaneous excitations initiated by spatially uncor-
related noise and wave propagation due to coupling. When
Vp andV are close, some part of the media oscillate with its
phase locked by the signal. Waves propagating from these
locked regions adjust the spiking phase of the neighboring

regions to entrain a larger domain, so that after a transient the
whole media become locked with almost stationary fronts.

Very weak coupling strengthg does not support wave
propagation in the discrete lattices, and the locking is lost as
in decoupled cells. For largerg being able to support pulsat-
ing waves of unforced media, the long tail inPsTd is elimi-
nated so thatVa<Vp; the spiking sequences attain a much
higher degree of coherence[23] compared to decoupled cells
[28]. In this case, locking of the media can be achieved with
almost vanishing signal amplitudeA,0 when nV=mVp
[24], and the resonant patterns are dominantly LPW. While at
rather largeg, waves propagate very fast to achieve almost
perfect global synchronization of the whole domain and the
temporal coherence is reduced significantly[23]. The media
again act similarly to an isolated cell without a clear fre-
quency locking for subthreshold signals.

III. OSCILLATORY REGIME

Now we consider the self-sustained oscillatory regime by
taking the bifurcation parametera=0.99 in Eq. (1), while
keeping the coupling strengthg=0.03 as in the excitable re-
gime. Previous works[1–5] have demonstrated interesting
resonant pattern formation in various self-sustained oscilla-
tory media, and here we focus on the effects of noise.

Unlike harmonic self-sustained oscillations fore,1 in
Eq. (1), with slow-fast variables ate!1 in the FHN model
and many other active oscillatory models, the rotation along
the periodic orbit is rather nonuniform. The trajectory passes
by the unstable fixed point rather closely where it slows
down, resulting in relaxation oscillations. In the presence of
a small noise, the system is rather sensitive to perturbation
only when it is in the vicinity of the fixed point where noise
becomes dominant and kicks the trajectory to escape earlier
on average. While this only influences slightly the geometry
of the orbit, it can alter the oscillation frequency clearly as
depicted in Fig. 6. For small noise, wave propagation sur-
vives, but the oscillation periodT starts to fluctuate; the dis-
tribution PsTd of T becomes broader and the peak shifts to
smaller values with increasing noise level[Fig. 6(b), D=0,
D=10−5 and D=10−4]. Accordingly, CFFVp and MFFVa,
which are almost the same in this region, increase withD
[Fig. 6(a)]. At a threshold noise levelD.5.0310−4, the

FIG. 5. Response of the media to various signal frequencyV at
fixed noise intensityD=3.0310−4. (a) 1:1, 2:1, and 3:1 locking
regions in the parameter spacesV ,Ad. The symbols represent dif-
ferent patterns as in Fig. 4(b). The dotted line shows the spiking
threshold, and above the solid lines are the superathreshold locking
region of homogeneous noise-free media.(b) The corresponding
coherence measureR which increases withA.

FIG. 6. Effects of noise on controlling the frequency of the
self-sustained oscillationsa=0.99d. (a) CFF sVpd and MFFsVad as
a function of the noise intensityD. (b) Distribution of the oscilla-
tion period T of the oscillators for various noise intensities. The
vertical dot-dashed line represents the period of the noise-free
oscillator.
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waves fail to survive. After the transition the noisy pattern
becomes irregular similar to that in Fig. 1(a). PsTd now is
quite broad and asymmetric, with a long tail at largeT [Fig.
6(b), D=10−3]. The MFF Va drops abruptly and is clearly
smaller than CFFVp due to the long tail inPsTd, as is simi-
lar to the case in the excitable regime[see Fig. 4(a)]. Such a
transition at the critical noise level seems to be related to
directed percolation[30], however, a detailed analysis is out
of the scope of the present work.

The two effects induced by noise, i.e., fluctuation of spik-
ing periodsT which on average shift to smaller values, have
significant impact on the response of the media to weak sig-
nals. In Fig. 7, we compare the Arnold locking tongues of the
media at noise intensityD=3.0310−4 to the tongues of the
noise-free media. In the noise-free media, the tips of the
locking region are located at multiples of the natural fre-
quencymVp as a result of time scale matching. The locking
regions are quite asymmetrical for a stronger signal ampli-
tudeA, extending to signal frequenciesV much smaller than
mVp. To understand the asymmetry of the locking regions,
we compare the trajectory of an oscillator in the autonomous
medium to that in the locking region(V=3.0,A=0.01, indi-
cated by the filled triangle in the 2:1 locking region in Fig.
7). It is seen that the forced oscillator[Fig. 8(b)] slows down
to perform some small oscillations around the fixed point
xF=−0.99; such small oscillations are not present in the au-
tonomous oscillator in Fig. 8(a). Figure 8(c) depicts the cor-
responding orbits in a close vicinity of the unstable fixed
point F in the phase spacesx,yd. These plots show that slow
signals with appropriate amplitudes may lock the oscillations
when the orbit is pushed closer to the fixed pointF and stays
in the neighborhood ofF for a longer time to match the
period of the signal. Note that the orbits away fromF are
kept almost unchanged by the forcing signal. The behavior is
similar for other values ofsV ,Ad in the asymmetrical lock-
ing regions, but the detailed oscillation patterns close toF
are different. In the presence of noise, the trajectory can no
longer perform those tiny oscillations very close toF as in
the noise-free media. The locking tongues thus become much
more symmetrical. The tips of the locking regions shift to a
larger frequency, now at the noise-controlled CFFmVp. As a
combined result of the noise effects, the locking regions have
been reshaped significantly, which is of importance for reso-
nant pattern formation in experimental systems where noise
is inevitably present.

So far the results presented in the excitable regime and in
the oscillatory regime are obtained with a spatially uniform
initial condition. We have checked that the frequency locking
behavior is the same for random initial conditions and for
different realizations of noise. The detailed resonant pattern,
however, depends on the initial conditions and the realiza-
tions of noise.

IV. DISCUSSION

Two fields of investigation of spatially extended systems,
resonant pattern formation in periodically forced self-
sustained oscillatory media and noise-sustained pattern for-
mation in excitable media, have received a great deal of re-
cent interest. Our work in this paper is on the borderline of
these two fields. On the one hand, we have studied effects of
periodic forcing on noise-sustained wave structures in the
excitable regimes. On the other hand, we have considered
effects of noise on resonantly forced self-sustained oscilla-
tory media. In both regimes, we have demonstrated interest-
ing resonant pattern formation and phase locking behavior.
In the excitable regime, a weak subthreshold signal can be
used to probe noise-induced internal order(here the CFFVp)
of the media and to control the originally irregular wave
structures into coherent resonant waves patterns. The reso-
nance and frequency locking occur when the signal fre-
quency is close to a rational ratiosm:nd of the noise-induced
CFF of the media. The locking and resonance should be
observed also in subexcitable media where multiplicative
noise induces transitions to excitable or oscillatory regime
and initiates waves. Noise also affects the dynamics in the
oscillatory regime. The resonant response regions to weak
signal have been reshaped significantly. The results suggest
that noise, when combined with an weak signal, could be a
very useful tool to manipulate active extended systems, such
as the excitable[20] or subexcitable[17] BZ reactions in

FIG. 7. Locking regions of the oscillatory mediasa=0.99d at the
noise intensityD=3.0310−4. The symbols represent different pat-
terns as in Fig. 4(b). The Arnold tongues of the noise-free homoge-
neous media are shown by the solid lines for a comparison. The
filled triangle in the 2:1 locking region corresponds to the results in
Fig. 8.

FIG. 8. Comparison of the orbit of an autonomous oscillator
sA=0d (a) with the orbit of a forced oscillator(V=3.0,A=0.01) (b).
The dashed lines in(a) and (b) showx value at the unstable fixed
point, xF=−0.99, and the dotted line in(b) indicates the periodic
forcing. (c) The corresponding orbits in the phase spacesx,yd, in a
close vicinity of the unstable fixed pointF.
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experiments or natural systems such as the cardiac tissue
[25].

Active excitable or oscillatory dynamics in spatially ex-
tended systems, together with noise, are very relevant to cal-
cium signaling in living cells. Spatiotemporal patterns and
waves of calcium signals have been observed experimentally
[31]. Recent theoretical analysis has demonstrated the impor-
tance of stochastic release kinetics for calcium waves
[30,32]. In particular, noise-sustained oscillation and AECR
have been observed in a stochastic fire-diffusion-fire model
of calcium release[33]. Our results in this paper suggest that
such noise-sustained oscillations may be entrained by a weak
signal, which could be meaningful for regulation of calcium
signaling.

Noise enhanced internal coherence has also been ob-
served in vivo cat spinocortical nerve systems[34]. Our re-
sults on locking and resonance may provide an explanation

for noise-induced entrainment in human brain waves[35]
which are manifestation of collective oscillations in coupled
excitable neurons subject to internal synaptic noises and ex-
ternal noises. Thus the control of wave structure and collec-
tive behavior by noise and weak signals may have a wealth
of potential implications for active chemical, biochemical,
cardiology and neurophysiology systems. In the biological
context, the couplings are usually not regular. The influences
of network topology on the resonant response are under in-
vestigation.
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